

Island Labs

VHF AMPLIFIER MODULE

VHF amplifier module designed for use in portable transmitters operating from a 9.6 V supply. The module is a two-stage amplifier consisting of n-channel FET crystals and lumped-element matching circuits.

The BGY94A will produce a minimum of 5 W into a 50 Ω load over the 68 to 88 MHz frequency range.

QUICK REFERENCE DATA

Mode of operation			CW
Frequency range			68 to 88 MHz
DC supply voltages	VS1, VS2	nom.	9.6 V
Drive power	PD	max.	35 mW
Load power	PL	>	5.0 W
Input, output impedance	zj, zL	nom.	50 Ω

MECHANICAL DATA

Dimensions in mm

3 = V_{S1} and second stage bias

4 = Earth

Fig. 1 SOT-182.

5 = VS2 6 = Earth 7 = RF output flange = earth

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

DC supply terminal voltages*	VS1, VS2	max.	13.5	٧
RF input terminal voltage*	±V _i	max.	25	٧
RF output terminal voltage*	$\pm V_{\mathbf{o}}$	max.	25	٧
Load power (see Fig. 2)	PL	max.	9.0	W
Drive power	P_{D}	max.	70	mW
Storage temperature range	T _{stg}		-40 to + 100	oC
Operating heatsink temperature	Th	max.	90	oc

Fig. 2 Load power derating; VSWR = 1:1.

^{*} With respect to earth.

CHARACTERISTICS

 T_{h} = 25 °C unless otherwise stated $V_{S\,1}$ = $V_{S\,2}$ = 9.6 V; R_{S} = R_{L} = 50 Ω ; f = 68 to 88 MHz.

Quiescent currents

first stage current			
P _D = 0 second stage current with	101	typ.	125 mA
first stage open circuit			
$P_D = 0$; $I_{S1} = 0$	102	<	0.5 mA
RF drive power		<	35 mW
$P_L = 5.0 W$	PD	typ.	10 mW
Efficiency		-γρ.	10 ,,,,,
P ₁ = 5.0 W		>	40 %
1 L - 5.0 W	η	typ.	48 %
Harmonic output	any harmon (relative to		
	carrier)	<	-35 dB
Input VSWR			
with respect to 50 Ω	VSWR	max.	2:1

Stability

The module is stable with load VSWR up to 8 (all phases) when operated within the following conditions:

 $V_{S1} \le V_{S2}$ = 4 to 11.2 V; f = 68 to 88 MHz; P_D = 17 to 70 mW; $P_L <$ 9 W (matched).

Ruggedness

The module will withstand a load VSWR of 50 for short period overload conditions, with P_D, V_{S1} and V_{S2} at maximum values, providing the combination does not result in the matched RF output power derating curve being exceeded (T_h < 90 °C).

Mounting

To ensure good thermal transfer the module should be mounted onto a heatsink with a flat surface and heat-conducting compound applied between module and heatsink. The module is designed to be pressed against the heatsink by a sheet spring applying up to 50 N to the top surface of the module encapsulation. The leads of the devices may be soldered directly into a circuit using a soldering iron with a maximum temperature of 245 °C for not more than 10 s at a distance of at least 1 mm from the plastic.

Power rating

In general it is recommended that the output power from the module under nominal conditions should not exceed 7 W in order to provide an adequate safety margin under fault conditions.

Gain control

The module is designed to be operated at a constant output power of 5 W. The module is adjusted to produce nominal output power by reducing the first stage supply voltage (V_{S1}). If the module is to be used over a range of output power levels below 5 W the first stage supply voltage should not be reduced below 4 V. If further reductions in power are needed this may be achieved by varying the drive power (P_D), however for stable operation care must be taken to avoid operating the module outside the published stability conditions.

Fig. 3 Load power as a function of drive power; $V_{S1} = V_{S2} = 9.6 \text{ V}$.

Fig. 4 Load power as a function of supply voltage V_{S1} ; $P_D = 35$ mW; $V_{S2} = 9.6$ V.

Fig. 5 Load power and efficiency as functions of frequency; $P_D = 35 \text{ mW}$.

Fig. 7 Second and third harmonic rejection as a function of frequency; $P_D = 35$ mW; $V_{S1} = V_{S2} = 9.6$ V.

Fig. 6 Load power and efficiency as functions of frequency; $P_D = 35$ mW; $V_{S1} = 7.5$ V; $V_{S2} = 9.6$ V.

Fig. 8 Change in power gain as a function of heatsink temperature; f = 78 MHz; $P_D = 35$ mW; $V_{S1} = V_{S2} = 9.6$ V.